Problem 3
Consider the following class that implements a doubly-linked list of integers with no dummy node. The last node’s next pointer is NULL; the first node’s prev pointer is NULL. There is no tail pointer. When the list is empty, head is NULL.

class LinkedList
{
	public:
		…
		int countAdjacentMatches () const;
		void eraseLast ()
		{
			if (head != NULL)
				eraseLastAux (head);
		}
		void writeDiff (const LinkedList& other) const
		{
			wd (head, other.head);
		}
	private:
		struct Node
		{
			int value;
			Node* next;
			Node* prev;
		};
		Node* head;
		void eraseLastAux (Node* h);
		void wd (const Node* p1, const Node* p2) const;
};

a. The countAdjacentMatches member function counts how many nodes have a value that is equal to the value of the node that immediately follows it in the list. For examples, if the LinkedList a contained nodes with the values 3 6 6 17 4 4 4 8 4 7, then the call a.countAdjacentMatches() returns 3, because it counted the first 6 and the first two 4s. Write the countAdjacentMatches() member function no more than 15 lines long.

int LinkedList::countAdjacentMatches() const
	{

		no more than 15 lines

	}
b. The eraseLast member function removes the last node, if any, from the linked list. To help it do its work, it calls eraseLastAux, which removes the last node from the linked list, but is guaranteed to be called on a list with one or more nodes; it will always be passed a non-NULL pointer.
Write a non-recursive implementation of the eraseLastAux member function no more than 15 lines long.

void LinkedList::eraseLastAux (node* h)
{

	no more than 15 lines

}
	
c. Write a recursive implementation of the eraseLastAux member function no more than 15 lines long. Do not use while, for, or goto.

void LinkedList::eraseLastAux (node* h)
{

	no more than 15 lines without using while, for, or goto

}
d. A strictly increasing list is a list each of whose elements has a value that is less than the one that follows it. For example, 3 7 8 10 is strictly increasing list, but 3 8 7 10 is not (8 is not less than 7), and 3 7 7 10 is not (7 is not less than 7). If x and y are LinkedLists whose nodes form two strictly increasing lists, calling x.writeDiff(y) writes out, one per line, all elements of that are not in y. For example, if x contains 2 3 5 8 9 and y contains 3 5 6 7 8 10, then x.writeDiff(y) would write, one per line, the values 2 and 9.
The member function writeDiff calls a helper function wd, which accepts two Node pointers; if each points to a (possible empty) strictly increasing linked list of Nodes, it writes out the values one per line, that are in the first list but not the second.
Write a recursive implementation of the wd member function no more than 15 lines without using while, for, or goto.

void LinkedList::wd (const Node* p1, const Node* p2) const
{

	no more than 15 lines without using while, for, or goto

}
[bookmark: _GoBack]
